The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail.
نویسندگان
چکیده
High force coefficients, similar to those observed for revolving model hawkmoth wings in the accompanying paper (for which steady leading-edge vortices are directly observed), are apparent for revolving model (mayfly, bumblebee and quail) and real (quail) animal wings ranging in Reynolds number (Re) from 1100 to 26000. Results for bumblebee and hawkmoth wings agree with those published previously for Drosophila (Re approximately 200). The effect of aspect ratio is also tested with planforms based on hawkmoth wings adjusted to aspect ratios ranging from 4.53 to 15.84 and is shown to be relatively minor, especially at angles of incidence below 50 degrees. The normal force relationship introduced in the accompanying paper is supported for wings over a large range of aspect ratios in both 'early' and 'steady' conditions; local induced velocities appear not to affect the relationship.
منابع مشابه
The aerodynamics of revolving wings I. Model hawkmoth wings.
Recent work on flapping hawkmoth models has demonstrated the importance of a spiral 'leading-edge vortex' created by dynamic stall, and maintained by some aspect of spanwise flow, for creating the lift required during flight. This study uses propeller models to investigate further the forces acting on model hawkmoth wings in 'propeller-like' rotation ('revolution'). Steadily revolving model haw...
متن کاملInduced airflow in flying insects I . A theoretical model of the induced flow Sanjay
Introduction Flapping birds and insects are often likened to revolving propeller blades or rotors because their wings generate lift by steadily pushing air downward. Two influential aerodynamic models of flight in insects (Ellington, 1984c) and birds (Rayner, 1979) drew much inspiration from the extensive theoretical work on rotor aerodynamics. These models focused primarily on the far-field wa...
متن کاملAerodynamics of tip-reversal upstroke in a revolving pigeon wing.
During slow flight, bird species vary in their upstroke kinematics using either a 'flexed wing' or a distally supinated 'tip-reversal' upstroke. Two hypotheses have been presented concerning the function of the tip-reversal upstroke. The first is that this behavior is aerodynamically inactive and serves to minimize drag. The second is that the tip-reversal upstroke is capable of producing signi...
متن کاملOn the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation.
This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and ...
متن کاملThe effect of advance ratio on the aerodynamics of revolving wings.
Recent studies have demonstrated that a quasi-steady model closely matches the instantaneous force produced by an insect wing during hovering flight. It is not clear, however, if such methods extend to forward flight. In this study we use a dynamically scaled robotic model of the fruit fly Drosophila melanogaster to investigate the forces produced by a wing revolving at constant angular velocit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 205 Pt 11 شماره
صفحات -
تاریخ انتشار 2002